Lipid profile in hypertension: A meta-analysis using western countries data

Kavindra Borgaonkar ${ }^{1 *}$, Ranjit Patil ${ }^{2,}$ Pradeep Benjarge ${ }^{3}$
${ }^{1}$ Associate Professor, Department of Biochemistry, Government Medical College, Latur, Maharashtra, INDIA.
${ }^{2}$ Professor, Department of Medical Biochemistry, Dr.Ulhas Patil Medical College, Jalgaon, Maharashtra, INDIA.
${ }^{3}$ Consulting Physician, Krishna Hospital, Aurangabad, Maharashtra, INDIA.
Email: kb2172@rediffmail.com, ranj42@gmail.com, drpradeep777@gmail.com

Abstract

Introduction: Cardiovascular disease (CVD) remains the leading cause of mortality and morbidity in the world Aims and Objectives: To Study Lipid profile in hypertensive patients by a meta-analysis using western countries data Methodology: This meta-analysis study involves hypertensive persons and their lipid profile in western population of 13 years i.e. from 2002 to 2015 published studies involving western population comprising 4953 hypertensive and 5014 non hypertensive population. For selecting these article various search engines like PubMed, Medline, Mendlay Library, Cochrane Library, Embase search, Google Scholar, Index Copernicus, Science Direct etc were use. The Statistical analysis was done by the Comprehensive Meta-Analysis Software (CMA Software). Results: It has been observed that high Cholesterol level, high Triglyceride level, high Low Density Lipoproteins level were observed in Hypertensive patients and high HDL level found in Normotensive individuals. Conclusion: As per the new studies in western population Hypertensive patients in Western world have a close association with dyslipidemia and need measurement of blood pressure and lipid profile at regular intervals to prevent cardiovascular disease, stroke, and other comorbidities.

Keywords: Risk factors, Cardiovascular diseases, dyslipidemia, blood pressure.
*Address for Correspondence:
Dr. Kavindra Borgaonka, Associate Professor, Department of Biochemistry, Government Medical College, Latur, Maharashtra, INDIA.
Email: kb2172@rediffmail.com
Received Date: 10/09/2016 Revised Date: 19/10/2016 Accepted Date: 14/11/2016

INTRODUCTION

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in the world ${ }^{1,2}$. The high prevalence of CVD is attributed to multiple modifiable cardiovascular risk factors, such as hypercholesterolemia, smoking, hypertension, diabetes, and obesity ${ }^{3,4}$. Many of these risk factors tend to cluster and coexist in the same individual ${ }^{5-9}$. Hypertension and hypercholesterolemia are the most co-prevalent of these risk factors ${ }^{8,9}$ and are estimated to contribute to 7.1 and 4.4 million deaths per year, respectively ${ }^{10}$. The risks associated with
concomitant hypertension and dyslipidemia are greater than the sum of the risks from hypertension or dyslipidemia alone ${ }^{11,12}$. Even though there are no specific cholesterol targets for hypertensive individuals, the treatment of concurrent hypercholesterolemia is a part of the integrated management of cardiovascular risk in these patients. Clinical trials have consistently demonstrated that pharmacologic treatments that lower blood pressure (BP) and cholesterol levels reduce the risk of cardiovascular events ${ }^{13-16}$. Based on these evidences, several clinical guidelines recommended therapeutic targets for BP and cholesterol ${ }^{17,18}$. Despite these recommendations, the suboptimal use of antihypertensive and lipid modifying therapies is common ${ }^{19,20}$ contributing significantly to a low level of attainment of therapeutic targets in real world clinical practice ${ }^{12,21-23}$.

MATERIAL AND METHODS

This is a meta-analysis involving hypertensive persons and their lipid profile in western population of 13 years i.e. from 2002 to 2015 of online published studies. Journal of Clinical and Diagnostic Research ${ }^{3}$ Of the western world population involving 4953 hypertensive

[^0]and 5014 non hypertensive population was selected for the study. For selecting these article various search engines like PubMed, Medline, Mendlay Library, Cochrane Library, Embase search, Google Scholar, Index Copernicus, Science Direct etc. to study the Articles with Key Words like Hyperlipidemia, Hypercholesterolemia, Hypertriglyceridemia, Hypertension, Cardio vascular diseases, Lipid Profile of Hypertensives, Hypertension in Western Population. Out of 393789 articles, near about 100 studies were selected by using various filters like hypertension and hyperlipidemia and western population. These 100 studies were reviewed by a team of experts for the inclusion and exclusion of studies; inclusion criteria like all the study patients should be hypertensive and study of lipid profile i.e. Sr. Cholesterol, Sr. Triglyceride,

High Density Lipoproteins, Low Density Lipoproteins and those studies not involving lipid profile, not involving hypertensive patients etc. Lipid profile was expressed in one unit i.e. $\mathrm{mg} / \mathrm{dl}$ and the values which were expressed in the $\mathrm{mmol} / \mathrm{L}$ were converted to $\mathrm{mg} / \mathrm{dl} 42$. So at the end total 14 studies were selected for Meta-analysis. The Statistical analysis done by the Comprehensive MetaAnalysis Software (CMA Software). All studies having various lipid profile were compared in hypertensive and non hypertensives. Lastly the new effect size summary of each variable expressed by red Diamond in Forest plots, both models like fixed effect and random effect models were studied. The hypertensive group is expressed in Forest Plot as ' A ' and non hypertensive as ' B '.

OBSERVATION AND RESULTS

Figure 1: Forest plot showing relationship of sr. total cholesterol in hypertensive (a) and normotensive (b) western population

From Figure 1: In the effect- size analysis summary it is clear that as the Higher Total cholesterol level is found in the Hypertensive patients as compared to normotensive
individuals it means high Cholesterol level favors to Hypertension (Favors A) vice versa respectively. Journal of Clinical and Diagnostic Research.

Figure 2: Forest plot showing relationship of sr. Hdl in hypertensive (a) and normotensive (b) western population

From Fig .2: In the effect- size analysis summary it is clear that as the Higher HDL level is found in normotensive individuals as compared to Hypertensive
patients it means high HDL level favors to Normotensive individuals (Favors B) vice versa respectively.

Figure 3: Forest plot Showing relationship of Sr. Triglyceride in Hypertensive (A) and Normotensive (B) Western Population

From Fig.3: In the both the effect- size analysis i.e. Fixed and Random model. In the summary, it is clear that as the Higher Sr. Triglyceride level is found in Hypertensive patients as compared to normotensive individuals and it
means high Triglyceride level favors to Hypertension (Favors A) vice versa respectively. Journal of Clinical and Diagnostic Research5

Figure 4: Forest plot Showing relationship of Sr. LDL in Hypertensive (A) and Normotensive (B) Western Population

Figure 4 In the Fixed effect- size analysis model; in the summary it is clear that as the Higher Sr. LDL level is found in Hypertensive patients as compared to normotensive individuals and it means high Low Density Lipoproteins level favors to Hypertension (Favors A) vice versa respectively.
serum lipid profile and hypertension among western population. Results of this study revealed that the mean values of serum TC, TG, and LDL were significantly higher among the hypertensive patients compared to normotensives. The mean HDL level was lower in the hypertensives compared to normotensives and was statistically significant the reference figures of these studies are ${ }^{24-38}$

DISCUSSION

In this study, we investigated the relationship between
Table 1:

Author 1	M.J. Landray $2002{ }^{24}$			
Sample Size				
Hypertension	H (45)		N (41)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	222.35	22.5	216.55	19.5
Triglyceride (mg/dl)	140.83	12.3	109.83	13.4
HDL- Cholesterol (mg/dl)	52.2	9.5	53.36	10.2
LDL- Cholesterol (mg/dl)	149.26	8.5	134.57	9.5
Author 2	Loronzo Gordon $2010{ }^{27}$			
Sample Size	408			
Hypertension	H (154)		N (254)	

Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	155	61	122	23
Triglyceride (mg/dl)	131	38.97	129	23
HDL- Cholesterol (mg/dl)	109	28.61	38	12
LDL- Cholesterol (mg/dl)	160	30	96	19
Author 3	P.Ramu $2010{ }^{28}$			
Sample Size	893			
Hypertension				
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	176	11.5	172.7	11.7
Triglyceride ($\mathrm{mg} / \mathrm{dl}$)	120	2.9	118.3	2.5
HDL- Cholesterol (mg/dl)	40.8	0.4	41	0.5
LDL- Cholesterol (mg/dl)	115.5	1.3	109.2	1.5
Author 4	Sergio González García 2008 ${ }^{30}$			
Sample Size	140			
Hypertension	H(61)		N(79)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	214.23	32.2	199.14	29.2
Triglyceride (mg/dl)	193.97	23.5	171.83	22.1
HDL- Cholesterol (mg/dl)	44.85	15.5	45.63	11.1
LDL- Cholesterol (mg/dl)	134.18	38.2	105.18	31.3
Author 5	A Poorabbas $2007{ }^{27}$			
Sample Size	51			
Hypertension	H (33)		N(18)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	238	57.12	135.66	10.71
Triglyceride (mg/dl)	298.3	116.5	120.17	22.59
HDL- Cholesterol (mg/dl)	36.67	8.34	39.61	6.62
LDL- Cholesterol (mg/dl)	160	20.63	75.67	18.63
Author 6	P. LALOUX $2004{ }^{\mathbf{2 9}}$			
Sample Size	485			
Hypertension	H (243)		N(242)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	217	49.7	202	45.8
Triglyceride (mg/dl)	156	67.8	123.79	61.9
HDL- Cholesterol (mg/dl)	41.5	12.1	45.9	17.7
LDL- Cholesterol (mg/dl)	144.6	44	132	40.3
Author 7	Maria cristina Elias ${ }^{25}$			
Sample Size	43			
Hypertension	H (20)		N(23)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	177	10	168	9
Triglyceride ($\mathrm{mg} / \mathrm{dl}$)	103	10	99	13
HDL- Cholesterol (mg/dl)	39	3	42	4
LDL- Cholesterol (mg/dl)	119	9	106	8
Author 8	Hyunjung Kim 2016 ${ }^{\mathbf{3 1}}$			
Sample Size	121			
Hypertension	H(45)		N(76)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	133.3	37.1	123.6	28.2
Triglyceride (mg/dl)	123.5	73.3	112.9	65.4
HDL- Cholesterol (mg/dl)	36.6	13	37.2	9.2
LDL- Cholesterol (mg/dl)	75.7	56.9	61.2	22.8
Author 9	Pedro M. Silva $2013{ }^{\mathbf{2 9}}$			
Sample Size				
Hypertension	H (348)		N(568)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	204.94	23.1	197.21	20.2

Triglyceride (mg/dl)	132.86	12.1	132.86	15.4
HDL- Cholesterol (mg/dl)	46.4	14.5	50.27	13.4
LDL- Cholesterol (mg/dl)	123.74	23.1	112.14	21.2
Author 10	Siobha'n E. McQuaid $2011{ }^{33}$			
Sample Size	454			
Hypertension	H(244)		N (210)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	220.42	22.1	204.94	18.5
Triglyceride (mg/dl)	141.71	15.2	97.43	17.2
HDL- Cholesterol (mg/dl)	42.54	19.3	50.27	20.3
LDL- Cholesterol (mg/dl)	132.2	29.2	105	25.4
Author 11	Hadiza Saidu $2014{ }^{34}$			
Sample Size	66			
Hypertension	H(33)		N (33)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	180.97	4.21	153.13	7.4
Triglyceride (mg/dl)	152.34	6.7	106.28	8.3
HDL- Cholesterol (mg/dl)	66.51	5.8	80.04	3.4
LDL- Cholesterol (mg/dl)	116.39	3.9	49.88	5.8
Author 12	Alice T.C.R Kiba Coumare $2015{ }^{35}$			
Sample Size	201			
Hypertension	H(158)		N (43)	
Lipid profile	Mean	SD	Mean	SD
Total Cholesterol (mg/dl)	208.43	34.5	181.36	29.5
Triglyceride (mg/dl)	109.83	15.5	97.43	13.4
HDL- Cholesterol (mg/dl)	59.16	12.5	47.56	14.3
LDL- Cholesterol (mg/dl)	Vivencio Barrios $2007{ }^{\text {43 }}$			
Author 13				
Sample Size	5866			
Hypertension	H (2933)		N (2933)	
Total Cholesterol (mg/dl)	237	40.9	227.3	42.2
Triglyceride (mg/dl)	192.3	92.2	120.1	46.6
HDL- Cholesterol (mg/dl)	47.8	93.5	58.5	76
LDL- Cholesterol (mg/dl)	154.2	17	144.8	16.4
Author 14	PATRICIA LANDÁZURI $2011{ }^{38}$			
Sample Size	237			
Hypertension	H (204)		N (33)	
Total Cholesterol (mg/dl)	200	3.9	157.4	7.8
Triglyceride (mg/dl)	169	6.4	109.1	10.3
HDL- Cholesterol (mg/dl)	41.5	0.9	39.7	2.1
LDL- Cholesterol (mg/dl)	127.2	3.4	95.9	7.1

(H-Hypertensive, N-Normotensive)

Hypertension is recognized globally as a major risk factor for CVD, stroke, diabetes, and renal diseases.39About 80% of hypertensive persons have comorbidities such as obesity, glucose intolerance, abnormalities in lipid metabolism, among othears. A large scale study conducted in Mexico by Aguilar-Salinas CA 40 showed that the most prevalent abnormality in Mexican urban adults, aged 20-69 years, was HDL cholesterol below 0.9 $\mathrm{mmol} / \mathrm{L}(46.2 \%$ for men and 28.7% for women). Hypertriglyceridemia ($>2.26 \mathrm{mmol} / \mathrm{L}$) was the second most prevalent abnormality (24.3%). Increased LDL ($\geq 4.21 \mathrm{mmol} / \mathrm{L}$) was observed in 11.2% of the sample. Half of the hypertriglyceridemic subjects had a mixed dyslipidemia or low HDL cholesterol. More than 50% of
the low HDL cases were not related to hypertriglyceridemia. 40 The pan-European Survey of HDL measured lipids and other cardiovascular risk factors in 3,866 patients with type 2 diabetes and 4,436 nondiabetic patients undergoing treatment for dyslipidemia in eleven European countries, and showed that diabetic Hypertensive patients had lower HDL $(1.22 \pm 0.37 \mathrm{mmol} / \mathrm{L}$ versus $1.35 \pm 0.44 \mathrm{mmol} / \mathrm{L}, \mathrm{P}<0.001)$ and higher TG $(2.32 \pm 2.10 \mathrm{mmol} / \mathrm{L}$ versus 1.85 ± 1.60 $\mathrm{mmol} / \mathrm{L}, \mathrm{P}<0.001$) than non-hypertensive diabetic patients . 41 More hypertensive diabetic compared to nondiabetic patients had low HDL (45% versus 30%, respectively), high TG ($\geq 1.7 \mathrm{mmol} / \mathrm{L} ; 57 \%$ versus 42%, respectively), or both (32% versus 19%, respectively). HDL <0.9
$\mathrm{mmol} / \mathrm{L}$ was found in 18% of diabetic and 12% of nondiabetic subjects. ${ }^{41}$

CONCLUSION

As per the new studies in western population Hypertensive patients in Western world people have a close association with dyslipidemia and need measurement of blood pressure and lipid profile at regular intervals to prevent cardiovascular disease, stroke, and other comorbidities.

REFERENCES

1. Murray CJ, Vos T, Lozano R, Naghavi M. Disabilityadjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380:2197-223.
2. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 2013; 127:e6245.
3. deGoma EM, Knowles JW, Angeli F, et al. The evolution and refinement of traditional risk factors for cardiovascular disease. Cardiol Rev 2012; 20:118-29.
4. Despre's JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation 2012; 126:1301-13.
5. Esquirol Y, Perret B, Ruidavets JB, et al. Shift work and cardiovascular risk factors: new knowledge from the past decade. Arch Cardiovasc Dis 2011; 104:636-68.
6. Poulter N. Global risk of cardiovascular disease. Heart 2003; 89: ii2-7.
7. ATPIII Final Report. II Rationale for intervention. Circulation 2002; 106:3163-223.
8. Onat A, Hergenc, G, Sari I, et al. Dyslipidemic hypertension: distinctive features and cardiovascular risk in a prospective population-based study. Am J Hypertens2005; 18:409-16.
9. Chamberlain DA, Tunstall-Pedoe H. Coronary artery disease: a European perspective. Eur Heart J 2002; 13:54-8.
10. Ezzati M, Lopez AD, Rogers A, et al. Selected major risk factors and global and region burden of disease. Lancet 2002; 360:1347-60.
11. Neaton JD, Wentworth D. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316099 white men. Multiple Risk Factor Intervention Trial Research Group. Arch Intern Med 1992; 152:56-64.
12. MacDonald TM, Morant SV. Prevalence and treatment of isolated and concurrent hypertension and hypercholesterolaemia in the United Kingdom. Br J ClinPharmacol2008; 65:775-86.
13. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and metaanalysis. BMJ 2003; 326:1423.
14. Mihaylova B, Emberson J, Blackwell L, et al. The effect of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of
individual data from 27 randomised trials. Lancet 2012; 380:581-90.
15. Turnbull F. Blood Pressure Lowering Treatment Trial Lists' Collaboration. Effects of different blood-pressurelowering regimens on major cardiovascular events: results of prospectively designed overviews of randomized trials. Lancet 2003; 362: 1527-35.
16. Sever PS, Dahlo"f B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-thanaverage cholesterol concentrations in the AngloScandinavian Cardiac Outcomes Trial - Lipid Lowering Arm (ASCOT-LLA): a multicentrerandomised controlled trial. Lancet 2003; 361:1149-58.
17. Williams B, Poulter NR, Brown MJ, et al. Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004BHS IV. J Hum Hypertens2004; 18:139-85.
18. Mansia G, De Backer G, Dominiczak A, et al. ESH-ESC guidelinesfor the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press 2007; 16:135-232.
19. Boz_entowicz-Wikarek M, Kocełak P, Smertka M, et al. Effectiveness of lipid-lowering therapy with statins for secondary prevention of atherosclerosis - guidelines vs. reality. Pharmacol Rep 2012; 64:377-85.
20. Kotseva K, Wood D, De Backer G, et al. Cardiovascular prevention guidelines in daily practice: a comparison of EUROASPIRE I, II, and III surveys in eight European countries. Lancet 2009; 373: 929-40.
21. Dutro MP, Gerthoffer TD, Peterson ED, et al. Treatment of hypertension and dyslipidemia or their combination among US managed-care patients. J ClinHypertens (Greenwich) 2007;9: 684-91.
22. Petrella RJ, Merikle E. A retrospective analysis of the prevalence and treatment of hypertension and dyslipidemia in Southwestern Ontario, Canada. ClinTher2008; 30:1145-54.
23. Leiter LA, Lundman P, da Silva PM, et al. Persistent lipid abnormalities in statin-treated patients with diabetes mellitus in Europe and Canada: results of the Dyslipidaemia International Study. Diabet Med 2011; 28:1343-51.
24. M.J. Landray et al .Abnoral Low density lipoprotein subfraction in pts with untreated hypertension .Q J Med 2002; 95: 165-171.
25. Maria Cristina Elias, Max Samuel Mattos Bolívar, Francisco Antonio Helfenstein Fonseca et al. Comparison of the Lipid Profile, Blood Pressure, and Dietary Habits of Adolescents and Children Descended from Hypertensive and Normotensive Individuals. Arq Bras Cardiol, volume 2004. 82 (2), 143-6.
26. Lorenzo Gordon, DalipRagoobirsingh, Errol Y St A Morrison, Eric Choo-Kang, Donovan McGrowder, E Martorell. Lipid Profile of Type 2 Diabetic and Hypertensive Patients in the Jamaican Population. Journal of Laboratory Physicians. Jan-Jun 2010; 2 (1): 25-29.
27. Poorabbas, F Fallah, J Bagdadchi, R Mahdavi, A Aliasgarzadeh. Determination of free L-carnitine levels in
type II diabetic women with and without complications. European Journal of Clinical Nutrition (2007) 61, 892895.
28. P. Ramu, G. Umamaheswaran, D. G. Shewade, R. P. Swaminathan1, J. Balachander2, C. Adithan . Gly 460 Trp polymorphism of the ADD1 gene and essential hypertension in an Indian population: A meta-analysis on hypertension risk. Indian Journal of Human Genetics January-April 2010; 16 (1): 8-15.
29. P. Laloux, L. Galanti, J. Jamart . Lipids in ischemic stroke subtypes. Acta neurol. belg., 2004, 104, 13-19
30. Sergio González García, OtmanFernándezConcepción, Rebeca FernándezCarriera, BS, Caridad Menéndez Saínz et al. MEDICC Review, Spring 2008; 10(2): 27-32.
31. HyunjungKim, Joonhong Park, HyojinChae, Gun Dong Lee. Potential Risk Factors Associated With Vascular Diseases in Patients Receiving Treatment for Hypertension. Ann Lab Med 2016;36:215-222 http://dx.doi.org/10.3343/alm.2016.36.3.215
32. Pedro M. Silva1, Salvador M. Cardoso2, and Antonio M. Ferreira. Persistent lipid abnormalities in patients with hypertension and dyslipidemia treated with statins: results of the Portuguese hypertensive subpopulation of the Dyslipidemia International Study (DYSIS). ClinExpHypertens, 2015; 37(2): 116-121 . 2015 Informa Healthcare USA, Inc. DOI: 10.3109/10641963.2014.913605
33. Siobha'n E. McQuaid, Leanne Hodson, 1 Matthew J. Neville, A. Louise Dennis, 1 Jane Cheeseman, Sandy M. Humphreys, ToralphRuge, Marjorie Gilbert, Barbara A. Fielding, Keith N. Frayn, and Fredrik Karpe. Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity. DIABETES. JANUARY 2011; 60: 47-55.
34. Hadiza Saidu, Kamilu Musa Karaye, Basil N Okeahialam .Plasma lipid profile in Nigerians with high - normal blood pressure. December 2014.DOI: 10.1186/1756-0500-7-930
35. Alice T.C.R KibaCoumare et al. Plasma lipid profile including highdensity lipoprotein subclass in Hypertensive in Ougadung Burkina Faso. Afr . J. Biochem;9(3) Res. 48-54. 36. Vivencio Barrios, Carlos Escobar, Alberto Calderón, José L. Prevalence of the metabolic syndrome in patients with hypertension treated in general practice in Spain: an assessment of blood pressure and low-density lipoprotein cholesterol control and accuracy of diagnosis. Journal of the CardioMetabolic Syndrome. 2007; 2(1): 9-15
36. PATRICIA LANDÁZURI, NELSY LOANGO, MARTHA LUCÍA GALLEGO. Cardiovascular risk factors in first-degree relatives of patients with hypertension.Colomb Med. 2011; 42: 17- 25.
37. Saha MS, Sana NK, Shaha RK. Serum lipid profile of hypertensive patients in the northern region of Bangladesh. J Bio-Sci. 2006; 14:93-98.
38. Aguilar-Salinas CA, Olaiz G, Valles V, et al. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J Lipid Res. 2001;42(8):1298-1307.
39. Bruckert E, Baccara-Dinet M, Eschwege E. Low HDLcholesterol is common in European type 2 diabetic patients receiving treatment for dyslipidaemia: data from a Pan-European survey. Diabet Med.2007;24(4):388391.
40. Welcome to OnlineConversion.com Convert just about anything to anything else. Available at http://www.onlineconversion.com/cholesterol.htm, accessed last time Nov. 2016.
41. Vivencio Barrios, Carlos Escobar, Alberto Calderón José L. Llisterri, Eduardo Alegría, Javier Muñiz,, Arantxa Matalí. Prevalence of the metabolic syndrome in patients with hypertension treated in general practice in Spain: an assessment of blood pressure and low-density lipoprotein cholesterol control and accuracy of diagnosis. Journal of the CardioMetabolic Syndrome. 2007; 2(1): 9-15.
[^1]
[^0]: How to site this article: Kavindra Borgaonkar, Ranjit Patil, Pradeep Benjarge. Lipid profile in hypertension: A meta-analysis using western countries data. MedPulse - International Medical Journal. November 2016; 3(11): 967-973. http://www.medpulse.in (accessed 20 November 2016).

[^1]: Source of Support: None Declared
 Conflict of Interest: None Declared

